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BOUSFIELD LOCALIZATIONS OF CLASSIFYING SPACES
OF NILPOTENT GROUPS

WILLIAM G. DWYER, EMMANUEL DROR FARJOUN, AND DOUGLAS C. RAVENEL

(Communicated by Ralph Cohen)

Abstract. Let G be a finitely generated nilpotent group. The object of this
paper is to identify the Bousfield localization LhBG of the classifying space
BG with respect to a multiplicative complex oriented homology theory h∗.
We show that LhBG is the same as the localization of BG with respect to the
ordinary homology theory determined by the ring h0.

1. Introduction

Let G be a finitely generated nilpotent group. The object of this paper is to
identify the Bousfield localization LhBG of the classifying space BG with respect
to a multiplicative complex oriented homology theory h∗. We show that LhBG is
the same as the localization of BG with respect to the ordinary homology theory
determined by the ring h0. This is similar to what happens when one localizes
a space X with respect to a connected ring theory E: it follows from results of
Bousfield [Bou79, Theorem 3.1] that LEX is the localization of X with respect to
ordinary homology with coefficients in the ring E0. The point in this paper is that
we do not require the spectrum h to be connected.

Our main result is

Theorem 1. Let G be a finitely generated nilpotent group, and let h∗ be a mul-
tiplicative complex oriented homology theory. Then LhBG = LRBG, where R is
the ring h0 and LR is localization with respect to the ordinary homology theory
determined by R.

The hypothesis that h∗ be multiplicative is not essential to any of our arguments.
We include it mainly to avoid cumbersome statements, and because most complex
oriented theories of interest, such as Morava K-theory, are multiplicative. We leave
to the interested reader the details of modifying the results here to remove the
assumption that h∗ is multiplicative. Complex orientability is used in an essential
way, in the proof of Theorem 3.

Our method of proof is to begin with finite p-groups and proceed by induction on
the order of the group. We show that if G has a normal subgroup H such that BH
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is h∗-local, G/H = Z/p, and B(G/H) is R-local for R = h0, then BG is h∗-local.
We do this by studying the fibration

BH −→ BG −→ B(G/H) = BZ/p.

To pass to arbitrary finitely generated nilpotent groups, we use the arithmetic
square decomposition of LhX due to Mislin and Bousfield.

Our main task is to study the fibration displayed above. In general it is not true
that if the base and fibre of a fibration are local with respect to some homology
theory, then the total space is also local. For example in the fibration

S2 −→ RP 2 −→ BZ/(2)

both fibre and base are local with respect to ordinary integral homology, but the
total space is not [BK72], [DDK77].

Our technique for dealing with this problem is to use the following lemma. If B
is a space and C is a class of fibrations over B, say that C has h∗-accessible fibres if
any h∗-equivalence (over B) between fibrations in C induces an h∗-equivalence on
fibres.

Lemma 2. Let h∗ be an arbitrary homology theory, and consider the diagram

F //

f

��

E
π

//

g

��

B

��

F ′ // LhE
Lhπ

// B

in which each row is a fibre sequence. Suppose that B and F are both h∗-local, and
that there exists some class C of fibrations over B which has h∗-accessible fibres and
contains both π and Lhπ. Then E is h∗-local.

Proof. Since C has h∗-accessible fibres and h∗(g) is an equivalence, h∗(f) is also
an equivalence. The space F is h∗-local by assumption, and F ′ is h∗-local since
it is the homotopy fibre of a map between h∗-local spaces. Therefore f , being an
h∗-equivalence between h∗-local spaces, is an equivalence. It follows that g is also
an equivalence and E is h∗-local.

In order to use this lemma, we show in the next section that if h∗ is a multi-
plicative complex oriented homology theory with the property that h0 is a vector
space over Z/p, then the class of all fibrations over BZ/p has h∗-accessible fibres.

2. Fibrations over BZ/p

In this section we prove the following theorem. The results and arguments are
inspired by the work of Kriz [Kri].

Theorem 3. Let h∗ be a multiplicative complex oriented homology theory such
that the ring h0 is a mod p vector space. Suppose that E and E′ are fibrations over
BZ/p with fibres F and F ′, respectively, and that f : E → E′ is a map over BZ/p
which induces an isomorphism h∗E ∼= h∗E′. Then f also induces an isomorphism
h∗F ∼= h∗F ′.

Recall that the homotopy coequalizer of a pair of maps f, g : X → Y is obtained
by taking the cylinder X × [0, 1] and gluing one end to Y by f and the other end
to Y by g. This construction is sometimes also called the double mapping cylinder
of f and g. Given maps of pairs f, g : (X, A) → (Y, B), the homotopy coequalizer
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of f and g is the pair (Z, C), where Z is the homotopy coequalizer of the two maps
X → Y and C is the homotopy coequalizer of the two maps B → C. A diagram of
pairs equivalent to

(X, A)
f, g

// (Y, B) // (Z, C)

is said to be a homotopy coequalizer diagram. The following lemma is elementary.

Lemma 4. Let

(X, A)
f, g

// (Y, B) // (Z, C)

be a homotopy coequalizer diagram. Suppose that h∗ is a homology theory. Then
there is a natural long exact sequence

· · · −→ hi(X, A)
f∗−g∗−→ hi(Y, B) −→ hi(Z, C) −→ hi−1(X, A) −→ · · · .

Lemma 5. Let G be a group of order p with generator g, and V a mod p vector
space with an action of G. Then the endomorphism (1 − g) of V is nilpotent (in
the sense that for some integer k, (1 − g)k = 0). In particular, the kernel of
(1− g) : V → V is nontrivial.

Proof. It is possible to choose k = p, since, in view of the fact that we are working
mod p, (1− g)p = 1− gp = 0.

Lemma 6. Suppose that h∗ is a multiplicative complex oriented homology theory.
Consider a homotopy fibre square

Ẽ
g

//

q

��

Ẽ′

q′

��

E
f

// E′

in which q and q′ are principal S1-bundles. If f induces an isomorphism on h∗,
then so does g.

Proof. Let ξ′ be the complex line bundle over E′ associated to q′, and ξ the complex
line bundle over E associated to q. Denote the Thom spaces of these bundles by
M(ξ) and M(ξ′) respectively. There is a map of cofibration sequences

Ẽ
q

//

g

��

E //

f

��

M(ξ)

M(f)

��

Ẽ′ q′
// E′ // M(ξ′).

The map h∗(f) is an isomorphism by hypothesis. By the Thom isomorphism for
h∗, the map h∗(M(f)) can be identified with h∗(f) and so it too is an isomorphism.
The fact that h∗(g) is an isomorphism follows from looking at long exact homology
sequences and using the five lemma.

Proof of Theorem 3. Let G denote the group Z/p, and g ∈ G some chosen gener-
ator. We can assume that F and F ′ are G-spaces, and that f is obtained up to
homotopy by taking the Borel construction β(f) on a G-map F → F ′. (One way
to obtain a suitable G-space equivalent to F , for instance, is to take the pullback
over E → BG of the universal cover of BG.)
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Suppose that X is a G-space (in our case either F or F ′). Note that the homotopy
coequalizer of the G-maps 1, g : G → G is the circle S1 with the usual rotation
action of G. More generally, the homotopy coequalizer of 1, g : X × G → X × G
is the product G-space X × S1. Taking Borel constructions gives a homotopy
coequalizer diagram

β(X ×G)
u,v

// β(X ×G) // β(X × S1)

where u and v are the appropriate induced Borel construction maps. It is clear
that β(X × S1) is the total space of a principal S1-bundle over β(X), in fact, the
total space of the pullback along the map β(X) → BG of the usual principal S1-
bundle β(S1) → BG. The Borel construction β(X ×G), on the other hand, can be
identified up to homotopy with X itself in such a way that u and v can be identified
with the original maps 1 and g.

Let Ẽ denote the Borel construction B(G, F × S1) and Ẽ′ the Borel construc-
tion B(G, F ′ × S1). According to the above considerations we have a homotopy
coequalizer diagram

(F ′, F )
1, g

// (F ′, F ) // (Ẽ′, Ẽ).

Since h∗(E′, E) vanishes by assumption, h∗(Ẽ′, Ẽ) vanishes by Lemma 6. Lemma 4
then implies that the endomorphism (1− g∗) of h∗(F ′, F ) is an automorphism, but
by Lemma 5 this can happen only if h∗(F ′, F ) = 0, in other words, only if the map
F → F ′ induces an h∗-isomorphism.

3. Localization of classifying spaces

We begin by recalling a result of Bousfield [Bou82] about localizations of BZ/p.
(In that paper he actually determines LhK(A, n) for any homology theory h∗ and
any abelian group A.) We say that a space is h∗-acyclic if the reduced homology
h̃∗(X) vanishes, or equivalently if Lh(X) is contractible.

Lemma 7. If h∗ is a multiplicative homology theory, then the space BZ/p is h∗-
acyclic if p is invertible in h0 and h∗-local otherwise. Equivalently, LhBZ/p =
LRBZ/p, where R = h0 and LR denotes localization with respect to H∗(−; R).

With Theorem 3 in hand we can prove the following.

Theorem 8. Suppose that h∗ is a multiplicative complex oriented homology theory,
and that G is a finite p-group. The space BG is h∗-acyclic if p is invertible in h0

and h∗-local otherwise.

Proof. If p is invertible in h0, it is obvious from the Atiyah-Hirzebruch spectral
sequence that BG is h∗-acyclic, so we assume that p is not invertible in h0 and
prove that BG is h∗-local. Suppose first that h0 is a Z/p-vector space. We argue
by induction on the order of G. Let H ⊂ G be a normal subgroup of index p.
The space BZ/p is h∗-local by Lemma 7, and so there is a diagram of fibration
sequences:

BH //

f

��

BG

g

��

// BZ/p

��

F ′ // LhBG // BZ/p.



BOUSFIELD LOCALIZATIONS OF CLASSIFYING SPACES 1859

It thus follows immediately from Lemma 2 and Theorem 3 that BG is h∗-local.
Now consider a general h of the specified type. For a prime q, let h/q denote the

smash product of the spectrum h representing h∗ with a mod q Moore spectrum
denoted here by M . We claim that h/q is still complex orientable: A complex
orientation for a spectrum E is a class x ∈ E2(CP∞) with certain properties. One
has a map E → E ∧M induced by the unit in M , and one can use the image of x
under this map as a complex orientation for E ∧M .

Alternatively, E is complex orientable iff it is an MU -module spectrum. If E is
an MU -module spectrum, so is E ∧M .

If X is a space, let XQ denote the localization of X with respect to rational
homology. Since (BG)Q = ∗, it follows from Proposition 7.2 of [Bou82] that we
have a fibration sequence

LhBG −→ ∏
qLh/qBG −→

(∏
q Lh/qBG

)
Q

= pt.

where q runs though the primes not invertible in h0. We know from above that
Lh/pBG = BG and that Lh/qBG = pt. for q 6= p. It follows that LhBG = BG as
claimed.

Slightly more generally we have

Theorem 9. Suppose that G is a finite nilpotent group and that h is a multiplica-
tive complex oriented homology theory. Then LhBG = LRBG, where LR is as in
Lemma 7. In particular, if no prime dividing the order of G is invertible in h0,
then BG is h∗-local.

Proof. The group G is the direct product of its Sylow p-subgroups Gp, so we have
BG ' ∏

p BGp and LhBG ' ∏
p LhBGp. The factors in this second product can

be identified with the help of Theorem 8. There is a similar product formula for
LRBG.

We now turn to the proof of the main theorem.

Proof of Theorem 1. It is shown by Bousfield in [Bou82] that for any space X ,
LhX ' LhLRX where LR is localization with respect to H∗(−; R). It is easy to
check that a map of spaces is an isomorphism on H∗(−; R) if and only if it is an
isomorphism on

⊕
p H∗(−;Z/p⊗ R) as well as an isomorphism on H∗(−;Q⊗R).

Let P be the set of all primes which are not invertible in R. It follows that a map
of spaces is an isomorphism on H∗(−; R) if and only if it is an isomorphism on
H∗(−;

⊕
p∈P Z/p), as well as, if Q ⊗ R 6= 0, an isomorphism on H∗(−;Q). Since

BG is a nilpotent space, the results of [DDK77] imply that if Q ⊗ R = 0 there is
an equivalence

LRBG '
∏
p∈P

LZ/pBG,

while if Q⊗R 6= 0 there is a homotopy fibre square

LRBG //

��

∏
p∈PLZ/pBG

��

(BG)Q // (
∏

p∈PLZ/pBG)Q.



1860 W. G. DWYER, E. D. FARJOUN, AND D. C. RAVENEL

We will carry out the proof by showing that LRBG is h∗-local, so that LhBG '
LhLRBG ' LRBG. To do this we will show that all of the constituents in the
above formulas for LRBG are h∗-local, and then appeal to the fact that the class
of h∗-local spaces is closed under homotopy inverse limit constructions.

Now according to [BK72, VI 2.6, 2.2 and IV §2] the space LZ/pBG ' (Z/p)∞BG
can be identified as B(Gp̂), where Gp̂ = limG/Γp

sG is the p-lower-central-series
completion of G. In particular LZ/pBG is equivalent to the homotopy inverse limit
of the tower {B(G/Γp

sG)}s. If p ∈ P , then each space in this tower is h∗-local
(Theorem 8), and so LZ/pBG is h∗-local by homotopy inverse limit closure of the
class of local spaces. By the same principle,

∏
p∈P LZ/pBG is h∗-local.

We can complete the proof by showing that if Q ⊗ R 6= 0, then any space W
local with respect to rational homology is also local with respect to h∗. Given the
definition of what it means for a space to be h∗-local, we have to show that any
h∗-equivalence f : X → Y induces a bijection f# : [Y, W ] → [X, W ] (where the
brackets indicate homotopy classes of maps). However, by [Bou82, 3.3], such an
f is a rational equivalence, so the fact that f# is a bijection follows from the fact
that W is local with respect to rational homology.

4. Possible extensions and related problems

It was shown above that the Bousfield localization with respect to certain ho-
mology theories of the classifying space BG of a finitely generated nilpotent group
is the same as the localization with respect to a classical homology theory with
appropriate coefficients. The question remains open for other (nonfinitely gener-
ated) nilpotent groups and other localization functors. Using the fact that K(F, 2),
where F is any free abelian group, is local with respect to complex K-theory it is
not hard to see that so is K(G, 1) for any abelian group G and in fact one can show
that Theorem 1 holds for any abelian group.

To go beyond Eilenberg-MacLane spaces the following is a natural possible ex-
tension of the main results above.

Let N be a nilpotent space whose homotopy groups vanish above certain dimen-
sion n. Is it true that any Bousfield homological localization of N is equivalent
to its localization with respect to a well chosen classical homology theory? More
generally the same should be true for an arbitrary polyGEM.

Similar questions arise beyond the realm of Bousfield homological localization.
Namely, one may ask for analogues of the above questions for an arbitrary homo-
topical localization Lf with respect to an arbitrary map f . In that case it is not
true that the localization will be the same as the localization with respect to a well
chosen classical homology. This is because the map BZ/p2 → BZ/p is in fact a
homotopy localization map, but it is not a homological localization map. But one
does expect that an arbitrary localization of a nilpotent space N as above will also
be a nilpotent space with vanishing homotopy groups above a certain dimension
that depends only on n.
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